Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591202

RESUMO

Quinolone is a heterocyclic compound containing carbonyl at the C-2 or C-4 positions with nitrogen at the C-1 position. The scaffold was first identified for its antibacterial properties, and the derivatives were known to possess many pharmacological activities, including anticancer. In this review, the quinolin-2(H)-one and quinolin-4(H)-one derivatives were identified to inhibit several various proteins and enzymes involved in cancer cell growth, such as topoisomerase, mi-crotubules, protein kinases, phosphoinositide 3-kinases (PI3K) and histone deacetylase (HDAC). Hybrids of quinolone with curcumin or chalcone, 2-phenylpyrroloquinolin-4-one and 4-quinolone derivatives have demonstrated strong potency against cancer cell lines. Additionally, quinolones have been explored as inhibitors of protein kinases, including EGFR and VEGFR. Therefore, this review aims to consolidate the medicinal chemistry of quinolone derivatives in the pipeline and discuss their similarities in terms of their pharmacokinetic profiles and potential target sites to provide an understanding of the structural requirements of anticancer quinolones.

2.
Rev Med Virol ; 34(2): e2529, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520650

RESUMO

The discovery of anti-retroviral (ARV) drugs over the past 36 years has introduced various classes, including nucleoside/nucleotide reverse transcriptase inhibitors, non-nucleoside reverse transcriptase inhibitors, protease inhibitor, fusion, and integrase strand transfer inhibitors inhibitors. The introduction of combined highly active anti-retroviral therapies in 1996 was later proven to combat further ARV drug resistance along with enhancing human immunodeficiency virus (HIV) suppression. As though the development of ARV therapies was continuously expanding, the variation of action caused by ARV drugs, along with its current updates, was not comprehensively discussed, particularly for HIV-1 infection. Thus, a range of HIV-1 ARV medications is covered in this review, including new developments in ARV therapy based on the drug's mechanism of action, the challenges related to HIV-1, and the need for combination therapy. Optimistically, this article will consolidate the overall updates of HIV-1 ARV treatments and conclude the significance of HIV-1-related pharmacotherapy research to combat the global threat of HIV infection.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/tratamento farmacológico , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/uso terapêutico , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Terapia Antirretroviral de Alta Atividade
3.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38100546

RESUMO

Cobra venom cytotoxins (CTX) cause dermonecrosis in envenomed patients who suffered from limb amputations due to the limitation of serotherapy-based antivenoms. This study aimed to identify small molecule inhibitors against CTX. A structure-based high-throughput virtual screening (HTVS) was conducted based on a conserved CTX, using the Natural Product Activity and Species Source (NPASS) screening library. The hits were valerenic acid, 1-oxo-2H-isoquinoline-4-carboxylic acid, acenaphthene, and 5-bromopyrrole-2-carboxamide, which interacted with contemporary antivenom binding site A and functional loops I-III of CTX, respectively, in molecular docking studies. Furthermore, molecular dynamic simulations were performed along with analysis of ligand fitness through their pharmacophore and pharmacokinetics properties. The antagonist effects of these hits on CTX-induced cytotoxicity were examined in human keratinocytes (HaCaT). Despite having a low binding affinity (KD = 14.45 × 10-4 M), acenaphthene demonstrated a significant increase of cell viability at 6 h and 24 h in experimental envenomed HaCaT. It also demonstrated the highest neutralization potency against CTX with a median effective concentration (EC50) of 0.05 mL/mg. Acenaphthene interacted with the functional loop II, which is the crucial cytotoxic site of CTX. It has an aromatic ring as its primary pharmacophoric feature, commonly used for rational drug design. In conclusion, acenaphthene could be a promising lead compound as a small molecule inhibitor.Communicated by Ramaswamy H. Sarma.

4.
RSC Adv ; 13(38): 26344-26356, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37671344

RESUMO

Leading pathological markers of Alzheimer's disease (AD) include Acetylcholinesterase (AChE), Butyrylcholinesterase (BuChE), Amyloid beta (Aß) and reactive oxygen species (ROS). Indole derivatives were identified and optimized to improve the potency against AChE, BuChE, Aß and ROS. The lead molecule IND-30 was found to be selective for AChE (selectivity ratio: 22.92) in comparison to BuChE and showed maximum inhibition potential for human AChE (IC50: 4.16 ± 0.063 µM). IND-30 was found to be safe on the SH-SY5Y cell line until the dose of 30 mM. Further, molecule IND-30 was evaluated for its ability to inhibit AChE-induced Aß aggregation at 0.5, 10 and 20 µM doses. Approximately, 50% of AChE-induced Aß aggregation was inhibited by IND-30. Thus, IND-30 was found to be multitargeting for AD.

5.
Int J Biol Macromol ; 253(Pt 3): 126665, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37689282

RESUMO

Despite extensive studies revealing the potential of cholinium-based ionic liquids (ILs) in protein stabilization, the nature of interaction between ILs' constituents and protein residues is not well understood. In this work, we used a combined computational and experimental approach to investigate the structural stability of a peptide hormone, insulin aspart (IA), in ILs containing a choline cation [Ch]+ and either dihydrogen phosphate ([Dhp]-) or acetate ([Ace]-) as anions. Although IA remained stable in both 1 M [Ch][Dhp] and 1 M [Ch][Ace], [Dhp]- exhibited a much stronger stabilization effect than [Ace]-. Both the hydrophilic ILs intensely hydrated IA and increased the number of water molecules in IA's solvation shell. Undeterred by the increased number of water molecules, the native state of IA's hydrophobic core was maintained in the presence of ILs. Importantly, our results reveal the importance of IL concentration in the medium which was critical to maintain a steady population of ions in the microenvironment of IA and to counteract the denaturing effect of water molecules. Through molecular docking, we confirm that the anions exert the dominant effect on the structure of IA, while [Ch]+ have the secondary influence. The computational results were validated using spectroscopic analyses (ultra-violet, fluorescence, and circular dichroism) along with dynamic light scattering measurements. The extended stability of IA at 30 °C for 28 days in 1 M [Ch][Dhp] and [Ch][Ace] demonstrated in this study reveals the possibility of stabilizing IA using cholinium-based ILs.


Assuntos
Líquidos Iônicos , Simulação de Acoplamento Molecular , Líquidos Iônicos/química , Insulina Aspart , Cátions , Ânions , Água/química
6.
Pharmacology ; 108(6): 504-520, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37748454

RESUMO

BACKGROUND: The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY: To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES: The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Nanomedicina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Inflamação/tratamento farmacológico
7.
Mol Biol Rep ; 50(9): 7667-7680, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418080

RESUMO

Antiepileptic drugs are versatile drugs with the potential to be used in functional drug formulations with drug repurposing approaches. In the present review, we investigated the anticancer properties of antiepileptic drugs and interlinked cancer and epileptic pathways. Our focus was primarily on those drugs that have entered clinical trials with positive results and those that provided good results in preclinical studies. Many contributing factors make cancer therapy fail, like drug resistance, tumor heterogeneity, and cost; exploring all alternatives for efficient treatment is important. It is crucial to find new drug targets to find out new antitumor molecules from the already clinically validated and approved drugs utilizing drug repurposing methods. The advancements in genomics, proteomics, and other computational approaches speed up drug repurposing. This review summarizes the potential of antiepileptic drugs in different cancers and tumor progression in the brain. Valproic acid, oxcarbazepine, lacosamide, lamotrigine, and levetiracetam are the drugs that showed potential beneficial outcomes against different cancers. Antiepileptic drugs might be a good option for adjuvant cancer therapy, but there is a need to investigate further their efficacy in cancer therapy clinical trials.


Assuntos
Anticonvulsivantes , Neoplasias , Neoplasias/tratamento farmacológico , Humanos , Anticonvulsivantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais , Animais
8.
Ther Deliv ; 14(5): 357-381, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37431741

RESUMO

Breast cancer (BC) is among the most frequent malignancies women face around the globe. Nanotherapeutics are constantly evolving to overcome the limitations of conventional diagnostic and therapeutic approaches. Nanotechnology-based nanocarriers have a higher entrapment efficiency, low cytotoxicity, greater stability and improved half-life than conventional therapy. Nano-drug delivery systems have improved pharmacokinetics and pharmacodynamics parameters because of nanomeric size. Currently, various nano-formulations are in preclinical and clinical settings for breast cancer, like polymeric nanoparticles, micelles, nanobodies, magnetic nanoparticles, liposomes, niosomes, gold-nanoparticles, dendrimers and carbon-nanotubes. This review highlights the recent advancement in developing nano-drug delivery systems for BC treatment. This review will open the gateway to researchers to understand the current approaches to developing nano-formulation and improving problems associated with conventional therapy.


Assuntos
Neoplasias da Mama , Nanopartículas , Nanotubos de Carbono , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Sistemas de Liberação de Fármacos por Nanopartículas , Lipossomos , Nanotecnologia
9.
Crit Rev Food Sci Nutr ; : 1-24, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255100

RESUMO

Enzymes are biologically active complex protein molecules that catalyze most chemical reactions in living organisms, and their inhibitors accelerate biological processes. This review emphasizes medicinal food plants and their isolated chemicals inhibiting clinically important enzymes in common diseases. A mechanistic overview was investigated to explain the mechanism of these food bases enzyme inhibitors. The enzyme inhibition potential of medicinal food plants and their isolated substances was searched in Ovid, PubMed, Science Direct, Scopus, and Google Scholar. Cholinesterase, amylase, glucosidase, xanthine oxidase, tyrosinase, urease, lipoxygenase, and others were inhibited by crude extracts, solvent fractions, or isolated pure chemicals from medicinal food plants. Several natural compounds have shown tyrosinase inhibition potential, including quercetin, glabridin, phloretin-4-O-ß-D-glucopyranoside, lupinalbin, and others. Some of these compounds' inhibitory kinetics and molecular mechanisms are also discussed. Phenolics and flavonoids inhibit enzyme activity best among the secondary metabolites investigated. Several studies showed flavonoids' significant antioxidant and anti-inflammatory activities, highlighting their medicinal potential. Overall, many medicinal food plants, their crude extracts/fractions, and isolated compounds have been studied, and some promising compounds depending on the enzyme have been found. Still, more studies are recommended to derive potential pharmacologically active functional foods.

10.
Nat Prod Res ; 37(6): 1023-1029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35815778

RESUMO

In the present research, oleuropein (OLE) contents from two Saudi Arabian wild olive trees (Olea europaea L.) leaves (O1 and O2), were collected from two nearby geographical sites differing in altitudes, and were determined via UHPLC-MS analysis. Moreover, total bioactive contents, antioxidant, and cytotoxicity (against MCF-7 and MDA-MB-231 cells) potential were also evaluated. The sample (O2) was found to contain significantly (p < 0.05) higher OLE content (4.13 ± 1.0 mg/g DW) compared with the sample (O1) having OLE content (3.63 ± 1.1 mg/g DW). A similar trend was observed regarding total bioactive contents and antioxidant potential. However, both samples exhibited low cytotoxicity against tested cell lines. Furthermore, with hierarchical cluster analysis that compared the results of our samples (O1 and O2) to other samples reported in the literature, it was found that the variance in OLE content and biological activities from Al Baha region leaves had a resemblance to other reported superior cultivars.


Assuntos
Antineoplásicos , Olea , Antioxidantes/química , Olea/química , Iridoides/química , Arábia Saudita , Glucosídeos Iridoides , Antineoplásicos/química , Extratos Vegetais/química , Folhas de Planta/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise
11.
Arch Pharm (Weinheim) ; 356(2): e2200407, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36403191

RESUMO

FMS-like tyrosine kinase 3 (FLT3) mutations occur in approximately 30% of acute myeloid leukemia (AML) patients. In the current study, the oxindole chemotype is employed as a structural motif for the design of new FLT3 inhibitors as potential hits for AML irradiation. Cell-based screening was performed with 18 oxindole derivatives and 5a-c inhibited 68%-73% and 83%-91% of internal tandem duplication (ITD)-mutated MV4-11 cell growth for 48- and 72-h treatments while only 0%-2% and 27%-39% in wild-type THP-1 cells. The most potent compound 5a inhibited MV4-11 cells with IC50 of 4.3 µM at 72 h while it was 8.7 µM in THP-1 cells, thus showing two-fold selective inhibition against the oncogenic ITD mutation. The ability of 5a to modulate cell death was examined. High-throughput protein profiling revealed low levels of the growth factors IGFBP-2 and -4 with the blockage of various apoptotic inhibitors such as Survivin. p21 with cellular stress mechanisms was characterized by increased expression of HSP proteins along with TNF-ß. Mechanistically, compounds 5a and 5b inhibited FLT3 kinase with IC50 values of 2.49 and 1.45 µM, respectively. Theoretical docking studies supported the compounds' ability to bind to the FLT3 ATP binding site with the formation of highly stable complexes as evidenced by molecular dynamics simulations. The designed compounds also provide suitable drug candidates with no violation of drug likeability rules.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Oxindóis , Tirosina Quinase 3 Semelhante a fms , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Oxindóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Relação Estrutura-Atividade
12.
BMC Chem ; 16(1): 111, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36482476

RESUMO

Quinolone is a privileged scaffold in medicinal chemistry and 4-Quinolone-3-Carboxamides have been reported to harbor vast therapeutic potential. However, conversion of N-1 substituted 4-Quinolone 3-Carboxylate to its corresponding carbamates is highly restrictive. This motivated us to adopt a much simpler, scalable and efficient methodology for the synthesis of highly pure N-1 substituted 4- Quinolone-3-Carboxamides with excellent yields. Our adopted methodology not only provides a robust pathway for the convenient synthesis of N-1 substituted 4- Quinolone-3-Carboxamides which can then be explored for their therapeutic potential, this may also be adaptable for the derivatization of other such less reactive carboxylate species.

13.
Molecules ; 27(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431766

RESUMO

Cancer is the leading cause of death and has remained a big challenge for the scientific community. Because of the growing concerns, new therapeutic regimens are highly demanded to decrease the global burden. Despite advancements in chemotherapy, drug resistance is still a major hurdle to successful treatment. The primary challenge should be identifying and developing appropriate therapeutics for cancer patients to improve their survival. Multiple pathways are dysregulated in cancers, including disturbance in cellular metabolism, cell cycle, apoptosis, or epigenetic alterations. Over the last two decades, natural products have been a major research interest due to their therapeutic potential in various ailments. Natural compounds seem to be an alternative option for cancer management. Natural substances derived from plants and marine sources have been shown to have anti-cancer activity in preclinical settings. They might be proved as a sword to kill cancerous cells. The present review attempted to consolidate the available information on natural compounds derived from plants and marine sources and their anti-cancer potential underlying EMT mechanisms.


Assuntos
Produtos Biológicos , Neoplasias , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias/tratamento farmacológico , Apoptose , Ciclo Celular
14.
Front Plant Sci ; 13: 988352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212347

RESUMO

This study was designed to seek the phytochemical analysis, antioxidant, enzyme inhibition, and toxicity potentials of methanol and dichloromethane (DCM) extracts of aerial and root parts of Crotalaria burhia. Total bioactive content, high-performance liquid chromatography-photodiode array detector (HPLC-PDA) polyphenolic quantification, and ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analysis were utilized to evaluate the phytochemical composition. Antioxidant [including 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH)], 2,2'-azino-bis[3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric reducing antioxidant power assay (FRAP), cupric reducing antioxidant capacity CUPRAC, phosphomolybdenum, and metal chelation assays] and enzyme inhibition [against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-glucosidase, α-amylase, and tyrosinase] assays were carried out for biological evaluation. The cytotoxicity was tested against MCF-7 and MDA-MB-231 breast cell lines. The root-methanol extract contained the highest levels of phenolics (37.69 mg gallic acid equivalent/g extract) and flavonoids (83.0 mg quercetin equivalent/g extract) contents, and was also the most active for DPPH (50.04 mg Trolox equivalent/g extract) and CUPRAC (139.96 mg Trolox equivalent /g extract) antioxidant assays. Likewise, the aerial-methanol extract exhibited maximum activity for ABTS (94.05 mg Trolox equivalent/g extract) and FRAP (64.23 mg Trolox equivalent/g extract) assays. The aerial-DCM extract was noted to be a convincing cholinesterase (AChE; 4.01 and BChE; 4.28 mg galantamine equivalent/g extract), and α-glucosidase inhibitor (1.92 mmol acarbose equivalent/g extract). All of the extracts exhibited weak to modest toxicity against the tested cell lines. A considerable quantities of gallic acid, catechin, 4-OH benzoic acid, syringic acid, vanillic acid, 3-OH-4-MeO benzaldehyde, epicatechin, p-coumaric acid, rutin, naringenin, and carvacrol were quantified via HPLC-PDA analysis. UHPLC-MS analysis of methanolic extracts from roots and aerial parts revealed the tentative identification of important phytoconstituents such as polyphenols, saponins, flavonoids, and glycoside derivatives. To conclude, this plant could be considered a promising source of origin for bioactive compounds with several therapeutic uses.

15.
Int J Mol Sci ; 23(9)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35563582

RESUMO

The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-ß (Aß) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aß toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn's non-amyloid-ß component (NAC) and Aß's C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn's deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01-1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of -118.049 kcal/mol and -114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.


Assuntos
Kisspeptinas , alfa-Sinucleína , Peptídeos beta-Amiloides/metabolismo , Colinérgicos , Humanos , Kisspeptinas/genética , Kisspeptinas/farmacologia , RNA Mensageiro , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
16.
Drug Metab Bioanal Lett ; 15(1): 51-63, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35049443

RESUMO

BACKGROUND: Genetic polymorphism of cytochrome P450 (CYP) contributes to variability in drug metabolism, clearance, and response. This study aimed to investigate the functional and molecular basis for altered ligand binding and catalysis in CYP2D6*14A and CYP2D6*14B, two unique alleles common in the Asian population. METHODS: CYP proteins expressed in Escherichia coli were studied using the substrate 3-cyano-7- ethoxycoumarin (CEC) and inhibitor probes (quinidine, fluoxetine, paroxetine, terbinafine) in the enzyme assay. Computer modelling was additionally used to create three-dimensional structures of the CYP2D6*14 variants. RESULTS: Kinetics data indicated significantly reduced intrinsic clearance in CYP2D6*14 variants, suggesting that P34S, G169R, R296C, and S486T substitutions worked cooperatively to alter the conformation of the active site that negatively impacted the deethylase activity of CYP2D6. For the inhibition studies, IC50 values decreased in quinidine, paroxetine, and terbinafine but increased in fluoxetine, suggesting a varied ligand-specific susceptibility to inhibition. Molecular docking further demonstrated the role of P34S and R296C in altering access channel dimensions, thereby affecting ligand access and binding and subsequently resulting in varied inhibition potencies. CONCLUSION: In summary, the differential selectivity of CYP2D6*14 variants for the ligands (substrate and inhibitor) was governed by the alteration of the active site and access channel architecture induced by the natural mutations found in the alleles.


Assuntos
Citocromo P-450 CYP2D6 , Quinidina , Alelos , Catálise , Citocromo P-450 CYP2D6/genética , Sistema Enzimático do Citocromo P-450/genética , Fluoxetina/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Paroxetina/farmacologia , Terbinafina
17.
J Biomol Struct Dyn ; 40(7): 3325-3335, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33164654

RESUMO

G protein-coupled receptors (GPCRs) belong to the largest family of protein targets comprising over 800 members in which at least 500 members are the therapeutic targets. Among the GPCRs, G protein-coupled estrogen receptor-1 (GPER-1) has shown to have the ability in estrogen signaling. As GPER-1 plays a critical role in several physiological responses, GPER-1 has been considered as a potential therapeutic target to treat estrogen-based cancers and other non-communicable diseases. However, the progress in the understanding of GPER-1 structure and function is relatively slow due to the availability of a only a few selective GPER-1 modulators. As with many GPCRs, the X-ray crystal structure of GPER-1 is yet to be resolved and thus has led the researchers to search for new GPER-1 modulators using homology models of GPER-1. In this review, we aim to summarize various approaches used in the generation of GPER-1 homology model and their applications that have resulted in new GPER-1 ligands.


Assuntos
Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Estrogênios , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores de Estrogênio/química , Receptores Acoplados a Proteínas G/química
18.
J Biomol Struct Dyn ; 40(4): 1617-1628, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33054574

RESUMO

Cancer ranks in second place among the cause of death worldwide. Cancer progress in multiple stages of carcinogenesis and metastasis programs through complex pathways. Sex hormones and their receptors are the major factors in promoting cancer progression. Among them, G protein-coupled estrogen receptor-1 (GPER) has shown to mediate cellular signaling pathways and cancer cell proliferation. However, the lack of GPER protein structure limited the search for new modulators. In this study, we curated an extensive database of natural products to discover new potential GPER modulators. We used a combination of virtual screening techniques to generate a homology model of GPER and subsequently used that for the screening of 30,926 natural products from a public database to identify potential active modulators of GPER. The best hits were further screened through the ADMET filter and confirmed by docking analysis. Moreover, molecular dynamics simulations of best hits were also carried out to assess the stability of the ligand-GPER complex. This study predicted several potential GPER modulators with novel scaffolds that could be further investigated and used as the core for the development of novel GPER modulators.Communicated by Ramaswamy H. Sarma.


Assuntos
Receptores de Estrogênio , Receptores Acoplados a Proteínas G , Proliferação de Células , Estrogênios , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Receptores de Estrogênio/química , Receptores Acoplados a Proteínas G/química
19.
Nat Prod Res ; 36(14): 3750-3755, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33550873

RESUMO

Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.


Assuntos
Anagallis , Monofenol Mono-Oxigenase , Amilases , Anagallis/química , Antioxidantes/farmacologia , Inibidores Enzimáticos/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Componentes Aéreos da Planta/química , Extratos Vegetais/química
20.
Drug Metab Pers Ther ; 36(4): 259-270, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-34821124

RESUMO

OBJECTIVES: Glucosamine, chondroitin and diacerein are natural compounds commonly used in treating osteoarthritis. Their concomitant intake may trigger drug-natural product interactions. Cytochrome P450 (CYP) has been implicated in such interactions. Cytochrome P450 2D6 (CYP2D6) is a major hepatic CYP involved in metabolism of 25% of the clinical drugs. This study aimed to investigate the inhibitory effect of these antiarthritic compounds on CYP2D6. METHODS: CYP2D6 was heterologously expressed in Escherichia coli. CYP2D6-antiarthritic compound interactions were studied using in vitro enzyme kinetics assay and molecular docking. RESULTS: The high-performance liquid chromatography (HPLC)-based dextromethorphan O-demethylase assay was established as CYP2D6 marker. All glucosamines and chondroitins weakly inhibited CYP2D6 (IC50 values >300 µM). Diacerein exhibited moderate inhibition with IC50 and Ki values of 34.99 and 38.27 µM, respectively. Its major metabolite, rhein displayed stronger inhibition potencies (IC50=26.22 µM and Ki =32.27 µM). Both compounds exhibited mixed-mode of inhibition. In silico molecular dockings further supported data from the in vitro study. From in vitro-in vivo extrapolation, rhein presented an area under the plasma concentration-time curve (AUC) ratio of 1.5, indicating low potential to cause in vivo inhibition. CONCLUSIONS: Glucosamine, chondroitin and diacerein unlikely cause clinical interaction with the drug substrates of CYP2D6. Rhein, exhibits only low potential to cause in vivo inhibition.


Assuntos
Condroitina , Citocromo P-450 CYP2D6 , Antraquinonas , Condroitina/farmacologia , Citocromo P-450 CYP2D6/metabolismo , Inibidores do Citocromo P-450 CYP2D6/farmacologia , Glucosamina/farmacologia , Humanos , Microssomos Hepáticos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...